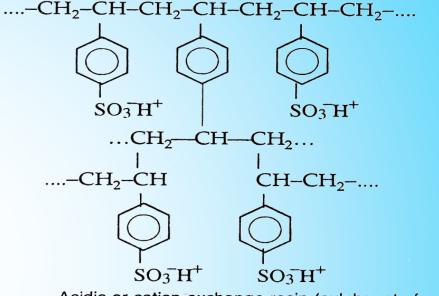
ION EXCHANGE PROCESS

(DE-IONIZATION OR DE-MINERALIZATION)

Mr. Audumbar Patkar

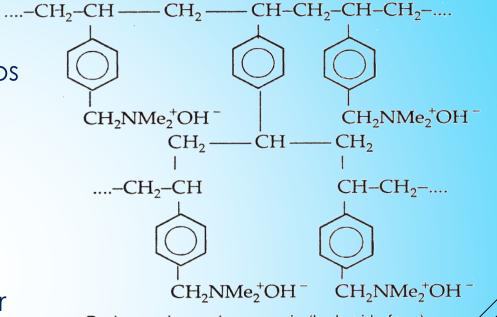
It produces water of very low hardness (~2ppm). So it is very good for treating water for use in high-pressure boilers.

► The process can be used to soften highly acidic or alkaline water.

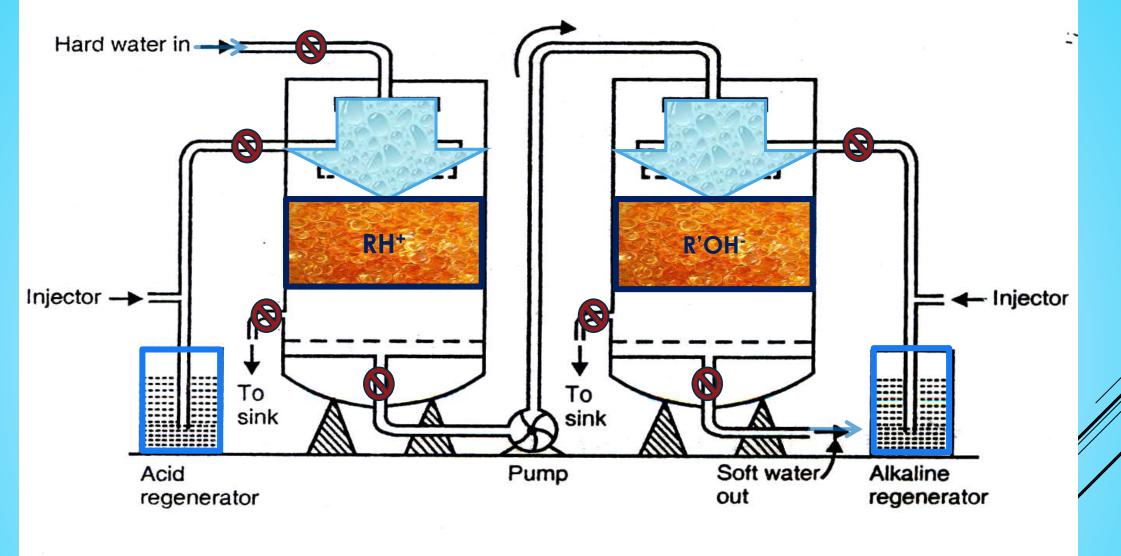

ARYANTAGES

 Ion-exchange resins are insoluble, cross-linked; long chain organic polymers with a microporous structure and the functional groups attached to the chains are responsible for the ionexchanging properties.

ION EXCHANGE RESINS


- Cation exchange resins are mainly styrene-divinyl benzene copolymers, which on sulphonation or carboxylation, becomes capable of exchange their hydrogen ions with the cations in the water
- These resins contain acidic functional groups (-COOH, -SO₃H etc.) which are capable of exchanging their H⁺ ions with other cations, which comes in their contact.

Acidic or cation exchange resin (sulphonate form)/


CATION EXCHANGE RESINS (RH⁺)

- Anion exchange resins are styrene-divinyl ----benzene which contain amino or quaternary ammonium or quaternary phosphonium groups as an internal part of the resin matrix.
- These, after treatment with dil. NaOH solution, become capable to exchange their OH- ions with anions in water.
- These resins contain basic functional groups (-NH₂=NH₂ as hydrochlorides) which are capable of exchanging their anions with other anions, which comes in their contact.

Basic or anion exchange resin (hydroxide form).

ANION EXCHANGE RESINS (R'OH-)

Demineralization of water

ION EXCHANGE PROCESS

► RNa⁺ H+ RH⁺ Na⁺ + ++ $\blacktriangleright R_2Ca^{2+}$ 2H+ 2RH⁺ Ca²⁺ +(Exhausted resin) (Acid solution) (Regenerated resin) (washing) ► R'CI-R'OH-Cŀ OH-+ +SO_2-► $R'_{2}SO_{4}^{2-}$ + 20H-2R'OH-+(Exhausted resin) (Base solution) (Regenerated resin) (washing)

REGENERATION OF EXHAUSTER RESIN

In next lecture: Potable water standard as per BIS

For your doubts and suggestions: patkaraudumbar@gmail.com www.facebook.com/appchemistry

▶ RH⁺ ▶ 2RH⁺ + Na⁺ → RNa⁺ + H⁺ ▶ 2RH⁺ + Mg²⁺ → R₂Mg²⁺ + 2H⁺

(Fix bed of resin) (ions in water)

(Fix bed of resin) (water)

REACTIONS WITH CATION EXCHANGER

R'Cl-► R'OH-OH-+ Cl +SO4²⁻ R'₂SO₄²⁻ ► 2R'OH-20H-+ + CO32-R'₂CO₃²⁻ ► 2R'OH-20H-+ +

(Fix bed of resin) (ions in water)

(Fix bed of resin)

(water)

REACTIONS WITH ANION EXCHANGER